@inproceedings{DBLP:conf/coling/FeltRS16,
booktitle={{COLING} 2016, 26th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, December 11-16, 2016, Osaka, Japan},
crossref={DBLP:conf/coling/2016},
link={http://aclweb.org/anthology/C/C16/C16-1168.pdf},
timestamp={Thu, 15 Dec 2016 16:57:46 +0100},
author={Paul Felt and
Eric K. Ringger and
Kevin D. Seppi},
biburl={http://dblp.uni-trier.de/rec/bib/conf/coling/FeltRS16},
pages={1787–1796},
abstract={In modern text annotation projects, crowdsourced annotations are often aggregated using item
response models or by majority vote. Recently, item response models enhanced with generative
data models have been shown to yield substantial benefits over those with conditional or
no data models. However, suitable generative data models do not exist for many tasks, such as
semantic labeling tasks. When no generative data model exists, we demonstrate that similar benefits
may be derived by conditionally modeling documents that have been previously embedded
in a semantic space using recent work in vector space models. We use this approach to show
state-of-the-art results on a variety of semantic annotation aggregation tasks.},
bibsource={dblp computer science bibliography, http://dblp.org},
year={2016},
title={Semantic Annotation Aggregation with Conditional Crowdsourcing Models
and Word Embeddings},
}